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ABSTRACT

As the popularity of voice user interface (VUI) exploded
in recent years, speaker recognition system has emerged
as an important medium of identifying a speaker in many
security-required applications and services. In this paper,
we propose the first real-time, universal, and robust adver-
sarial attack against the state-of-the-art deep neural network
(DNN) based speaker recognition system. Through adding
an audio-agnostic universal perturbation on arbitrary en-
rolled speaker’s voice input, the DNN-based speaker recog-
nition system would identify the speaker as any target (i.e.,
adversary-desired) speaker label. In addition, we improve
the robustness of our attack by modeling the sound distor-
tions caused by the physical over-the-air propagation through
estimating room impulse response (RIR). Experiment using
a public dataset of 109 English speakers demonstrates the
effectiveness and robustness of our proposed attack with a
high attack success rate of over 90%. The attack launch-
ing time also achieves a 100× speedup over contemporary
non-universal attacks.

Index Terms— speaker recognition systems, adversarial
examples, universal adversarial attack

1. INTRODUCTION

In recent years, voice user interface (VUI) has been integrated
into various platforms, such as smartphones and smart ap-
pliances, and is shaping up to become the hubs of our in-
creasingly connected lives. With the prevalent usage of VUI,
speaker recognition system, which identifies a person from
characteristics of voices, could be seamlessly integrated and
used for various security-enhanced applications, such as re-
mote voice authentication to prevent fraud in financial ser-
vices, voice-matched voice assistants that can only respond to
the owner’s voice, and even suspects identification and crim-
inals detection [1, 2].

Deep network networks (DNNs), with its superiority over
current state-of-the-art models (e.g., universal background
model-Gaussian mixture model) [3, 4], has been becom-
ing the computation core of the speaker recognition sys-
tems. However, recent studies have shown that DNN models
are vulnerable to adversarial input in various fields (e.g.,
computer vision [5], natural language processing [6, 7] and
speaker verification [8]). The most related work [8] generates

adversarial examples against an end-to-end speaker verifica-
tion model, which is a binary speaker recognition system that
verifies whether the voice is uttered by a claimed speaker or
not. However, the adversarial attack against a more complex
multi-class speaker recognition model still remains unex-
plored. Moreover, this attack [8] is individual attack (i.e.,
non-universal) requiring to generate different perturbation for
each voice input, which would cost considerable time training
perturbations for each individual voice input and thus make
real-time attacks impossible.

In this paper, we build the first real-time, universal, and
robust targeted adversarial attack on X-vector [9], a state-of-
the-art DNN-based multi-class speaker recognition model.
The adversarial attack is performed by crafting an audio-
agnostic universal perturbation which can be added into any
enrolled speaker’s any voice input to deceive the speaker
recognition system, causing it to output an adversary-desired
(targeted) speaker label. The generated universal perturba-
tion uses repeated-playback of fixed-length universal noise to
fit different voice input with various lengths. Additionally,
unlike the existing digital attack [8] that feeds the adversarial
examples to the speaker verification model directly, in this
paper we take one step forward to build robust adversarial at-
tacks through estimating the sound distortions introduced by
the physical world propagation, which makes the adversarial
examples remain effective while being played over-the-air.
Experiments on a public dataset of 109 speakers show the
effectiveness and robustness of our proposed attack with a
high attack success rate of over 90%. The achieved attack
launching time is only around 0.015s, which is 100× speedup
over contemporary non-universal attacks.

2. RELATED WORK
Adversarial Attack on Speech Recognition. Recent stud-
ies have successfully produced adversarial examples against
automatic speech recognition (ASR) system (i.e., speech-to-
text), which is the most prevalent application in the audio
space. For instance, Vaidya et al. [10, 7] generate noise-
like adversarial sound making ASR models output adversary-
desired text transcriptions. Nonetheless, the generated ad-
versarial examples would be perceived as noises by human,
which may draw considerable attention on practical attacks.
To solve this problem, Carlini et al. [6] propose to craft adver-
sarial samples by adding unnoticeable perturbations into orig-
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inal speech, misleading the model to translate the adversarial
examples to adversary-desired text. Moreover, Commander-
Song [11] can embed any malicious command into regular
songs, which could be recognized by ASR systems as mali-
cious commands but still being perceived as common music
by human. However, all the aforementioned ASR adversarial
attacks are individual attack through solving an optimization
problem for each individual input audio, which needs high
run-time requirements (e.g., several hours) to compute the ad-
versarial examples per input audio. Alternatively, a more re-
cent work [12] produces a single universal perturbation which
can fool ASR systems causing an error in transcription. This
work is in the case of untargeted attack, in which the adver-
sary cannot specify the expected speech transcription during
the phase of adversary example generation.
Adversarial Attack on Speaker Recognition. Different
from speech recognition systems, speaker recognition (a.k.a.,
voice recognition) mainly focuses on extracting individual-
dependent voice characteristics through embedding methods
to identify speakers’ identities regardless of their speech con-
tent. It has been shown a growing trend of using DNNs in the
embedding layers of speaker recognition model due to its su-
periority of scalable embedding performance [3, 4]. However,
few studies have been conducted to explore the vulnerability
of the DNN-based speaker recognition system. To the best of
our knowledge, the only related study [8] proposes to build
adversarial examples against an end-to-end speaker verifica-
tion model, which is a binary speaker recognition system.
Moreover, this attack is individual attack, which requires a
long time to craft different perturbation for each voice input.
It does not consider any sound distortions caused by practical
over-the-air playback either. To bridge the gap in terms of all
the aforementioned issues, in this paper we explore the pos-
sibility of launching real-time universal, targeted, and robust
adversarial attacks against multi-class speaker recognition
system, with 109 speakers in our testing model.

3. REAL-TIME, UNIVERSAL, AND ROBUST
ADVERSARIAL EXAMPLES

3.1. Target Speaker Recognition Model
In this work, the DNN-embedding-based X-vector system [9]
is used as the speaker recognition system since it has shown
a significant improvement over standard i-vector models, and
has been further studied in many follow-up studies (e.g., [13,
14]). The architecture of X-vector system is shown in Fig-
ure 1. Specifically, for an input audio, the system first extracts
mel-frequency cepstral coefficents (MFCCs) features using a
sliding window. The extracted features are then passed to a
time-delay neural network (TDNN) structure [15] that oper-
ates on audio frames. The statistics pooling layer takes the
output of the final frame-level layer as input, aggregates over
the input segment, and computes its mean and standard devi-
ation. Subsequently, hidden layers are used to map the con-
catenated statistics into final embeddings. In the recognition

Fig. 1. Targeted speaker recognition model (X-vector).

phase, the probabilistic linear discriminant analysis (PLDA)
computes the probability of the input audio belonging to each
enrolled speaker with the embedding information and identi-
fies the speaker label with the highest calculated score.

3.2. Challenges and Threat Model
Challenges. Generating such a real-time, universal, and ro-
bust adversarial example against speaker recognition system
in practice raises a number of challenges:
(1) Real-time Adversarial Attack. To craft an adversarial
noise with respect to the speaker’s speech, using conventional
optimization-based approach is usually very time-consuming,
which makes many practical attack scenarios impossible,
such as playing the adversarial noise on a hidden speaker in a
real-time manner along with the speaker’s voice input.
(2) Universal Targeted Adversarial Example. Using an audio-
agnostic universal perturbation to deceive the speaker recog-
nition system, which causes it to misclassify any enrolled
speaker’s input audio as the adversary-desired speaker, needs
to build a universal mapping from the audio sources to the
adversary-desired target. The proposed algorithm needs to be
general enough to various length audio inputs spoken by dif-
ferent speakers with various accents.
(3) Robust Adversarial Example. The attack performance
would be inevitably impacted by the sound distortions due
to the attenuation and multi-path effects while playing the
adversarial examples over the air. Thus, the generated ad-
versarial perturbation needs to be robust enough to remain
effective under this kind of real-world distortions.
Threat Model. In this work, we consider the white box threat
model where the adversary has full knowledge of the target
speaker recognition model as well as its parameters. In or-
der to build a robust adversarial attack considering the sound
distortions in the room where the attack will be launched, we
assume the adversary has access to the room’s layout. As
shown in Figure 2, we aim to find a single audio-agnostic uni-
versal perturbation that can be applied on arbitrary enrolled
speakers’ input audio to mislead the speaker recognition sys-
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Fig. 2. Threat model of the proposed attack.

tem causing it output the specific adversary-desired speaker
label. Additionally, we expect to build a more robust ad-
versarial perturbation that can remain effective while being
played over-the-air in acoustic room simulated environments.
3.3. Real-time, Universal and Robust Adversarial At-
tacks
Most of the existing targeted adversarial attacks would fool
DNN-based systems through building different adversary per-
turbation for each individual input. Differently, in this paper
we explore how to build a single universal perturbation that
can be directly applied to arbitrary speaker’s any utterance,
making the speaker recognition system output the adversary-
desired speaker label. Such a universal perturbation would
greatly shorten the attack launching time, making real-time
attacks possible.

To clearly present the steps of our perturbation generation,
we model the target speaker recognition system, X-vector, as
a function F (x), which takes as input an utterance x and out-
puts a predicted speaker label. We define P (x) as the function
of all DNN layers (including PLDA) to compute the proba-
bilities of classifying x as each of the profiled speakers. We
can recognize the voice as the speaker with highest calculated
probability, F (x) = Argmax(P (x)). Therefore, to launch a
universal targeted adversarial attack, where targeted speaker
label is t, we aim to find a perturbation δ that could achieve
F (x+ δ) = Argmax(P (x+ δ)) = t for arbitrary x.

To build such a universal attack, we need to find a gen-
eral solution that can make the generated perturbation effec-
tive for all the utterances regardless of their speakers, accents,
speech content and length. To overcome the issue of vary-
ing utterance length, we dynamically construct the universal
perturbation δ based on the length of the input utterance x:

δ = Crop([4δ _ ... _ 4δ], x), (1)
where 4δ is a short-length adversarial perturbation (e.g., 1s
in our work), and [4δ _ ... _ 4δ] is a vector constructed by
repeating 4δ. Crop(·, ·) crops the first input to the length of
the second input. With this process, the derived perturbation
δ could be applied to the audio input with any length.

To minimize the distortion between the adversarial exam-
ple and the original voice, δ would be clipped to a pre-defined
range. The generated adversarial example with the clipped δ
could be formulated as:

x′ = x+ Clipε(δ), (2)

where Clipε(δ) is the function to perform element-wise clip-
ping of δ. Values of δ outside the interval [−ε, ε] would be
clipped to the interval edges, and ε is our pre-defined attack
strength.

Moreover, to preserve the effectiveness of the adversarial
example while being played over the air, we first mimic the
sound distortions during playback and recording by estimat-
ing room impulse response (RIR), r, which characterizes the
acoustic propagation (e.g., reverberations) in a room environ-
ment. The details of how to estimate RIR (i.e., r) based on
the room setting are provided in Section 3.4. Then, we could
iteratively derive the targeted adversarial example through the
following objective function:

Argmax(P (x′ ∗ r)) = t, (3)
where t is the targeted speaker label, ∗ denotes the convo-
lution operation, and x′ ∗ r is the estimated adversarial ex-
ample recorded by the microphone. It is important to note
that the estimated RIR represents a certain mapping from the
played sound to the recorded sound as per specific location
of the loudspeaker and microphone in the room. To make
the generated adversarial examples robust in various environ-
mental settings, we estimate multiple RIRs r in various en-
vironments. To make the adversarial perturbation survive all
these environments, we randomly select one RIR in r for each
training step when updating the perturbation based on each
training utterance. In addition, as directly solving the non-
linear constrained non-convex problem is difficult, we itera-
tively solve the following optimization problem[7]:
minimizemax(max{P (x′ ∗ r)i : i 6= t} − P (x′ ∗ r)t,−κ),

(4)
where {P (x′ ∗ r)i : i 6= t} represents the output probabilities
of all speakers except the targeted speaker, while P (x′ ∗ r)t
denotes the predicted probability to the targeted speaker. κ is
a configurable parameter which represents attack confidence
and is set to 0 in our implementation. To generate the univer-
sal perturbation, we iteratively modify the trainable sequence,
4δ, which is used for constructing δ, with the entire training
dataset until satisfying the desired attack success rate. For
each training utterance, if the predicted probability of the tar-
geted class is larger than other classes, the update of the per-
turbation4δ is skipped on the next sample.

3.4. Room Impulse Response Estimation
Acoustic propagation in a room is commonly considered as
a linear and time-invariant system. Thus the recorded signal
R(x) could be presented as a deterministic function of the
played signal x: R(x) = x ∗ r, where r is the estimated room
impulse response (RIR), and ∗ denotes the convolution opera-
tion. To simulate the play-over-the-air process in the physical
world, we take the RIR generated by an acoustic room sim-
ulator [16] into account in the adversarial example training
phase. Specifically, the simulator can adjust several parame-
ters, including the size of a 3D shoe-box room, the location
of the audio sources and microphones, and the reverberation
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Table 1. Results of universal targeted attack.
Attack

Strength
Noise
Level

Min. Attack
Success Rate

Max. Attack
Success Rate

Avg. Attack
Success Rate

ε=0.05 -18.84dB 98.47% 100% 99.95%
ε=0.03 -23.27dB 95.31% 99.91% 98.40%
ε=0.01 -33.96dB 53.32% 95.48% 83.82%

rate. Optimization with the simulated RIR would increase the
robustness of the generated adversarial example, and conse-
quently enable over-the-air attack in practice.

4. EXPERIMENTAL RESULTS
4.1. Experimental Methodology
Dataset. We evaluate our proposed attack on an English
multi-speaker corpus provided in CSTR voice cloning toolkit
(VCTK) [17]. In total, the dataset contains 44217 utterances
spoken by 109 speakers with various accents. The dataset is
divided into a training and a testing set with a ratio of 4:1.
Baseline Model. In our TensorFlow-implemented X-vector
system [9], 30-dimensional MFCC features with a frame
length of 25ms are extracted. A pre-trained X-vector DNN
embedding model provided in Kaldi [18] is used in the model.
The baseline model achieves a classification accuracy of
92.8% on 8896 testing utterances from 109 speakers.
Evaluation Metrics. (1) Attack Success Rate: The ratio be-
tween the number of succeeded attacks and the total number
of attack attempts; (2) Noise Level: We quantify the relative
noise level of the perturbation δ with respect to the original
audio x in decibels (dB): D(δ, x) = 20log10(

max(δ)
max(x) ).

4.2. Attack Evaluation
Effectiveness of Universal Targeted Attack. To evaluate
the effectiveness of our proposed universal targeted attack,
we alternatively choose one of the 109 enrolled speakers
as the targeted speaker and the rest 108 speakers as vic-
tims. In total, we generated 109 universal adversarial per-
turbations, trying to make the speaker recognition system
classify the victims’ utterances as the targeted speakers. As
shown in Table 1, by adjusting attack strength ε, the noise
level ranges from −18.84dB to −33.96dB. As discussed in
the previous study [6], such noise level is considered to be
quasi-imperceptible to humans. For instance, −33.96dB is
comparatively the difference between a person talking and
the ambient noise in a quiet room. For each ε value, the
minimum, maximum, and average attack success rate among
all attack attempts targeting on 109 speakers are calculated.
We can observe that when the noise level is −18.84dB, a
high average attack success rate of 99.95% can be reached.
When the noise level decreases to −33.96 dB, the average
attack success rate still remains over 80%, which illustrates
the effectiveness of our proposed universal targeted attack.
Robustness Analysis Using Room Simulator. An acoustic
room simulator toolkit [16] is used to simulate the audio prop-
agation in a room environment. Specifically, a modeled room
with a size of 5m × 5m × 3m is used, and 120 locations of
the loudspeaker and the microphone are chosen randomly in

Table 2. Results of robust universal targeted attack using
acoustic room simulator.

Noise Level
Min. Attack
Success Rate

Max. Attack
Success Rate

Avg.Attack
Success Rate

Without RIR -18.84dB 0.7% 3.52% 1.33%
-18.84dB 74.68% 98.05% 90.19%

2*With RIR -23.27dB 66.54% 96.81% 86.17%
-33.96dB 54.48% 90.83% 78.25%

the room for RIR estimation. For the estimated RIRs, 100
locations are used to build the universal, targeted and robust
adversarial perturbation, and the rest 20 locations are used for
testing. Table 2 summarizes the results of our practical uni-
versal adversarial perturbation. We can observe that the uni-
versal adversarial perturbations trained with RIRs still remain
effective after the over-the-air simulation. In particular, the
practical universal perturbation generated with a noise level
of −18.84dB can still achieve an average attack success rate
of 90.19%. For comparison, we test the adversarial pertur-
bation of the same noise level and without RIR in the simu-
lated room environment. However, the average attack success
rate decreases significantly to 1.33%. This shows that our ap-
proach can efficiently improve the robustness of the generated
adversarial examples.
Speedup on Attack Time. Unlike conventional individual
attacks that require to build adversarial perturbation for each
individual voice input, our proposed universal attack could
generate a single perturbation that makes arbitrary speaker’s
utterances to be identified as the adversary-desired speaker.
Thus, simply playing the pre-generated universal perturbation
nearby the victim speaker becomes possible for launching ad-
versarial attacks. For showing the possibility of launching
real-time attacks, we compare the attack launching time of
using the conventional individual targeted attack method [6]
and our proposed universal attack for a given audio signal.
Particularly, the conventional targeted attack requires at least
15s to deploy, measured on a Tesla V100 GPU with 32GB
memory, while our proposed universal method only takes an
average of 0.015s, which results in a 100× speedup.

5. CONCLUSION
This paper proposes a real-time, universal, and robust targeted
adversarial attack against speaker recognition system. The
proposed attack builds a universal perturbation that can be
added into any enrolled speaker’s voice input to fool the sys-
tem causing it to output any adversary-desired speaker label.
The robustness of the adversarial perturbations is also greatly
improved by using an acoustic room simulator to estimate the
sound distortions associated with playing the audio over-the-
air. Evaluation on a public dataset of 109 speakers shows the
effectiveness and robustness of our proposed attack.
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